Global River Deltas and vulnerability
Global river delta dataset combines 2174 delta locations with polygons that define delta area. We define delta area as the extent of geomorphic activity created by deltaic channel movement, and delta progradation. We focus on channel network activity because it defines the most flood-prone zone and creates the resources and natural infrastructures that make deltas attractive sites for habitation. We define deltaic polygons with five points that encompass deltaic activity. These five points mark visible traces of deltaic activity with two points capturing the lateral extent of deposition along the shoreline, and with three points enclosing the up and downstream extent of deposition. The convex hull around these five points defines a delta polygon.
Citation
Edmonds, D.A., Caldwell, R.L., Brondizio, E.S. et al. Coastal flooding will disproportionately impact people on river deltas. Nat Commun 11, 4741 (2020). https://doi.org/10.1038/s41467-020-18531-4 Caldwell, R. L., Edmonds, D. A., Baumgardner, S., Paola, C., Roy, S., and Nienhuis, J. H.: A global delta dataset and the environmental variables that predict delta formation on marine coastlines, Earth Surf. Dynam., 7, 773–787, https://doi.org/10.5194/esurf-7-773-2019, 2019.
Data access
Original data for delta polygons in: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18531-4/MediaObjects/41467_2020_18531_MOESM3_ESM.xlsx
Code for recreating dataset using matlab: https://scholarworks.iu.edu/dspace/handle/2022/25788
Data download and preparation
source ~/proyectos/CES/cesdata/env/project-env.sh
mkdir -p $GISDATA/hydrology/global/River-Deltas
cd $GISDATA/hydrology/global/River-Deltas
wget --continue https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-18531-4/MediaObjects/41467_2020_18531_MOESM3_ESM.xlsx
wget --continue https://esurf.copernicus.org/articles/7/773/2019/esurf-7-773-2019-supplement.zip
unzip -u esurf-7-773-2019-supplement.zip
Create spatial polygons in R:
module add R/4.0.2
R --vanilla
require(readxl)
require(dplyr)
require(sf)
require(tidyr)
require(ggplot2)
require(rnaturalearth)
require(rnaturalearthdata)
require(rgeos)
theme_set(theme_bw())
setwd("~/Downloads")
xdata <- read_excel("41467_2020_18531_MOESM3_ESM.xlsx",skip=2)
pivot_wider()
xdata %>% select("ID",ends_with("_Lat"),ends_with("_Lon")) %>%
pivot_longer(cols=c(ends_with("Lon"),ends_with("Lat")), names_to=c("point","coord"),
names_sep=3, values_to = "value") %>%
pivot_wider(id_cols=c("ID","point"),names_from='coord',values_from = 'value') -> my_df
my_sf <- st_as_sf(my_df,
coords = c('Lon', 'Lat')) %>%
st_set_crs(4326) %>%
group_by(ID) %>%
summarise() %>%
ungroup() %>% # Just in case
st_convex_hull()
plot(my_sf)
##st_write(my_sf,"delta-polygons.gpkg")
world <- ne_countries(scale = "medium", returnclass = "sf")
class(world)
ggplot(data = world) +
geom_sf(fill = "antiquewhite1") +
geom_sf(data = my_sf, fill = "red",colour=2) +
coord_sf(xlim = c(-108, -68), ylim = c(-24.5, 33), expand = FALSE)
ggplot(data = world,fill='aliceblue',colour='orange') +
geom_sf(colour = "grey76",fill='grey95',alpha=.2) +
geom_sf(data = my_sf, fill = "red",colour=2)