Skip to main content

Global Forest Change

High-Resolution Global Maps of 21st-Century Forest Cover Change

Citation

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342 (15 November): 850–53. Data available on-line.

Data access

http://www.earthenginepartners.appspot.com/science-2013-global-forest/download.html

Data download

For all versions from v1.0 (2013) to v1.7 we can use a simple bash script to download the whole set:

source ~/proyectos/CES/cesdata/env/project-env.sh
mkdir -p $GISDATA/forest/global/GFC/


export SRC="https://storage.googleapis.com/earthenginepartners-hansen"

for VRS in GFC-2019-v1.7 ## GFC-2018-v1.6 GFC-2017-v1.5 GFC-2016-v1.4 GFC-2015-v1.3 GFC2015 GFC2014 GFC2013
do
for VAR in gain lossyear treecover2000
do
mkdir -p $GISDATA/forest/global/GFC/$VRS/$VAR
cd $GISDATA/forest/global/GFC/$VRS/$VAR
wget $SRC/$VRS/$VAR.txt
wget -b --continue -i $VAR.txt
done
done

Builds VRT (Virtual Dataset) as a mosaic of the list of input files

export VRS=GFC-2019-v1.7
export VAR=treecover2000

cd $GISDATA/forest/global/GFC/
for VRS in GFC-2019-v1.7
do
for VAR in gain lossyear treecover2000
do
gdalbuildvrt index_${VRS}_${VAR}.vrt $GISDATA/forest/global/GFC/${VRS}/${VAR}/Hansen_${VRS}_${VAR}_*.tif
done
done

Subsets

Example for Gran Sabana in Venezuela (bbox/: -63.1 4.6 -60.5 6.6) within 10N_070W tile, and for Suriname, last version of data:

export VRS=GFC-2019-v1.7
cd $WORKDIR
mkdir -p $WORKDIR/$VRS
for VAR in gain lossyear treecover2000 # datamask first last
do
## use -co "COMPRESS=LZW" for highest compression lossless ration
gdalwarp -te -63.1 4.6 -60.5 6.6 -co "COMPRESS=LZW" $GISDATA/sensores/Landsat/index_${VRS}_${VAR}.vrt $WORKDIR/$VRS/${VRS}.GS.${VAR}.tif
gdalwarp -te -59 1 -53 7 -co "COMPRESS=LZW" $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_10N_060W.tif $WORKDIR/$VRS/${VRS}.Suriname.${VAR}.tif
done

For large areas spanning several tiles we can merge the files, keeping the original resolution. Examples for Venezuela, North and Central America (NAC) and South America (SAM):

export VRS=GFC-2019-v1.7
export VAR=treecover2000

cd $WORKDIR
mkdir -p $WORKDIR/$VRS

cd $GISDATA/sensores/Landsat/
gdalbuildvrt index_$(VRS)_${VAR}.vrt $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*.tif
## RROR 3: Free disk space available is 570111430656 bytes, whereas 806400000000 are at least necessary. You can disable this check by defining the CHECK_DISK_FREE_SPACE configuration option to FALSE.
## Creation failed, terminating gdal_merge.
# nohup gdal_merge.py -co "BIGTIFF=YES" -o $WORKDIR/$VRS/${VRS}.world.${VAR}.tif $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*.tif &


gdal_merge.py -ul_lr -74 13 -59 0 -co "COMPRESS=LZW"-o ${VRS}.Venezuela.${VAR}.tif $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*N*W.tif
gdal_merge.py -ul_lr -62.70 -19.25 -54.20 -27.65 -co "COMPRESS=LZW" -o ${VRS}.Paraguay.${VAR}.tif $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*S*W.tif

gdal_merge.py -ul_lr -138 60 -40 3 -co "COMPRESS=LZW" -o ${VRS}.NAC.${VAR}.tif $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*N*W.tif

gdal_merge.py -ul_lr -90 15 -25 -60 -co "COMPRESS=LZW" -o ${VRS}.SAM.${VAR}.tif $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*W.tif

Or we can change the resolution

gdalwarp -te -90 -60 -25 15 -tr 0.001475 0.001475 -srcnodata "0" -dstnodata "0" -tap -r average $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*W.tif ${VRS}.SAM.${VAR}_500m.tif

gdalwarp -te -138 3 -40 60 -tr 0.001475 0.001475 -srcnodata "0" -dstnodata "0" -tap -r average $GISDATA/sensores/Landsat/$VRS/Hansen_${VRS}_${VAR}_*W.tif ${VRS}.NAC.${VAR}_500m.tif

export GISDATA=/opt/gisdb/extra-gisdata/
export VRS=GFC-2019-v1.7
export VAR=treecover2000


gdalwarp -tr 0.001475 0.001475 -srcnodata "0" -dstnodata "0" -tap -r average $GISDATA/sensores/Landsat/index_${VRS}_${VAR}.vrt ${VRS}.world.${VAR}_500m.tif

This dataset is used for...